qcon广州站web 3.0 专题上线,关注基础设施及相关技术,戳此了解
写点什么

2022年顶级机器学习算法和python库-金马国际

  • 2022 年 2 月 17 日
  • 本文字数:1854 字

    阅读完需:约 6 分钟

新的算法很难产生,2022 年可能也不例外。然而,仍有一些机器学习算法和 python 库将在未来更受欢迎。这些算法之所以与众不同,是因为它们包含了一些在其它算法中并不普遍的优点,我会在本文详细讨论这些优点。


无论是能够在你的模型中使用不同的数据类型,还是能够将内置算法整合到你当前公司的基础设施中,甚至是能够在一个地方比较几种算法的成功指标,你都可以预计,这些算法和库都会由于各种原因而在明年变得更受欢迎。下面,让我们更深入地了解一下 2022 年的一些新兴算法和库。

catboost

catboost 可能是最新的算法,因为它随着越来越流行而不断更新。这个机器学习算法对于处理分类数据的数据科学家特别有用。您可以考虑 random forest 和 xgboost 算法的优点,catboost 具有它们的大部分优点,同时还具有更多其它的优点。


以下是 catboost 的主要优点:


  • 无需担心参数调整——默认值通常会胜出,通常不值得手动调整,除非您想通过手动更改值来针对特定的异常分布

  • 更准确——不太过拟合,并且当您使用更具分类性的特征时,往往会得到更准确的结果

  • 快速——这种算法往往比其它基于树的算法更快,因为它不必担心用于示例的使用独热编码(one-hot encoding)的大型稀疏数据集,因为它使用了一种目标编码

  • 更快地预测——您可以更快地训练,这样您也就可以更快地使用您的 catboost 模型进行预测

  • shap——这个库被集成,便于解释整体模型的特征重要性以及特定预测总的来说,catboost 非常棒,因为它易于使用、功能强大,在算法领域具有竞争力,并且可以列在您的简历中来增光添彩。它可以帮助您创建更好的模型,最终使您的项目更好地为您的公司服务。


catboost 的文档:。

deepar forecasting

这个算法内置在流行平台 amazon sagemaker 中,如果您的公司目前使用 aws 技术栈或者想要使用 aws 技术栈,这可能是个好消息。在回归神经网络的帮助下,它用于预测/时间序列应用中的有监督学习。


以下是使用这个算法时需要用到的输入文件字段的一些示例:


  • start

  • target

  • dynamic _feat

  • cat


以下是使用这个算法/架构的一些优点:

  • 易于建模——在相同的地方构建/训练/部署,速度相当快


  • 简单的架构——聚焦于更少的编码,更多地关注您的数据和需要解决的业务问题当然,这个算法还有更多优点,所以我只是简单地介绍了下,因为不是所有的读者都在使用 aws。


deepar forcasting 算法的文档。

pycaret

因为没有太多的新算法需要讨论,我想包括一种能够比较几种算法的库,其中一些算法可能会更新迭代,所以比较新。这个 python 库是开源和低代码的,可以被引用。当我开始比较并最终选择我的数据科学模型的最终算法时,它让我更加了解新的和即将流行的机器学习算法。


以下是使用这个库的一些好处:


  • 更少的编码时间——您不需要导入库,也不需要设置每个算法特有的每个预处理步骤,相反,您可以填写一些参数,让您可以将几乎所有您听说过的算法并排进行比较

  • 易于使用——随着库的演变,它们的易用性也在不断提高。

  • 端到端处理——可以研究从数据转换到预测结果的数据科学问题

  • 集成良好——可以 power bi 中使用 automl

  • 整合——可以加入不同的算法以获得更多好处

  • 校准和优化模型

  • 关联规则挖掘

  • 更重要的是,一次性比较 20 算法总的来说,这个库虽然并不是一个新算法,但是它很可能包含 2022 年的新算法,或者至少是最新的算法,甚至像上面提到的 catboost 这样的算法都包含在这个库中——这就是我如何发现它的。话虽如此,我认为重要的是要包含这个库,这样您不仅可以了解 2022 年的最新算法,还可以了解您以前没有听说过或者错过的比较老的算法,因为您可以通过简单的用户界面将它们并排进行比较。


pycaret 的文档。

总结

如果你认为这个列表很短,那么你就会意识到并不是每年都会有一组新的机器学习算法。我希望这里提到的 3 个算法或库能够增添文档并更受欢迎,因为它们非常棒且不同于通常的逻辑回归/决策树等。


总而言之,以下是 2022 年可以期待的一些新的机器学习算法:


* catboost - 算法* deepar forecasting - 算法/软件包* pycaret - 包括新算法的库
复制代码


我希望您会觉得我的这篇文章既有趣又有用。无论您是否同意文中的观点,请随意在下方留言,讲讲为什么支持或反对。您认为我们还可以包括哪些更重要的算法或软件包/库?这些当然可以进一步阐明,但我希望能够阐明一些更独特的机器学习算法和库。

作者介绍

高级数据科学家,人工智能、科技和教育领域的顶尖作家,《面向数据科学》()供稿作家。


原文链接



2022 年 2 月 17 日 11:183912
infoq记者

发布了 851 篇内容, 共 288.7 次阅读, 收获喜欢 1615 次。

关注

评论

发布
暂无评论
发现更多内容

“芯”有灵“蜥” 走进 intel meetup

“芯”有灵“蜥” 走进 intel meetup

网站地图